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BACKGROUND

» Understanding the complex relationship between CO, uptake and CH, release
In wetlands is vital for comprehending their role in attenuating or exacerbating

climate change (Mitsch et al., 2013).

» Forested wetlands are known for their forest biomass and soil carbon pools
(Kolka et al., 2018). These forested wetlands constitute the largest category
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METHODOLOGICAL PROCESS

Utilize data from FLUXNET, FCH4 community
product (Delwiche et al 2021).

Analyze the data to understand the mechanisms
governing carbon and methane fluxes.

(49.5 %) of wetlands in the freshwater system (U.S. Fish and Wildlife Service,

National Wetlands Inventory; Dahl, 2011).

* Modeling forested wetlands is key to understanding processes, source-sink

dynamics, and quantifying carbon and methane flux.

STUDY AREA: FOUR FLUXNET SITES
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INITIAL RESULTS: FROM PEPRMT+ MODEL
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Figure 1: Scatter plot of the GPP measured at the flux tower and

- estimated from the model .
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The model effectively captures
daily GPP (Figure 1), methane
flux (Figure 2) and ecosystem
respiration (Figure 3) from
different forested wetlands.

The PEPRMT+ model is
successful in representing high
or low flux intensity years
(Figure 2) as well as monthly
patterns (Figure 3).

The model successfully
accounts temperature dependent
dynamics of ecosystem
respiration (Figure 4).

e The PEPRMT+ model
efficiently represents the
carbon fluxes across
wetlands at various
growth stages and types.
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(top row, left and right respectively),
US-NC4 and US-PFA

(bottom row, left and right respectively)

Efficiency criteria:
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Figure 2: Time series of methane flux measured at flux tower (blue line)
and estimated from the model (red line).

2018 R2 -- Coefficient of determination ,
NSE_nor --
rmse -- root mean square error

Update the model structure by incorporating the
major ecological processes.
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Evaluate the model performance with eddy-
covariance flux datasets.
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Figure 3: A box plot showing monthly sum of ecosystem respiration (Reco) on
the y-axis, with months in the x-axis. The vertical lines in the box represent
the mtermonth quartiles among the multiple years used in the analysis.
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Figure 4: Daily average temperature on the x-axis vs ecosystem respiration
(Reco) averaged for each month on the y-axis.
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Towards a generalized model to represent the complexities of methane flux processes in forested wetlands

MODELING APPROACH
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Figure 5. Peatland Ecosystem Photosynthesis Respiration and Methane Transport (PEPRMT) model
(Oikawa et al 2017, JGR: Biogeos) with the integration of Data Assimilation Linked Ecosystem Carbon
(DELAC) model (William et al 2005, GCB). Inputs are shown in white, outputs in grey, processes in
orange, model equations in purple, and pools are yellow boxes.

TAKE HOME MESSAGES

* The biogeochemical process of forested wetlands can be effectively represented by
coupling existing models, incorporating missing representation of carbon cycle
processes, and improving their parameterization using Markov chain Monte Carlo
(MCMC) simulation.

* The updated PEPRMT+ model (Figure 5) captures carbon dynamics better than a
simple process-based PEPRMT model by taking an advantage of DALEC model that
helps to allocate carbon pools and fluxes effectively in the forest ecosystem.

NEXT STEPS

* |Improve and validate CH4 transport from trees, including knees - the woody
structures that form above the root of the bald cypress - in the model.

« Understand CH, flux generation, emphasizing the role of severe weather events,
extreme conditions like drought, flood, and other key environmental factors.

 Clarify the interdependence and sensitivity of different parameters in generating
carbon and methane flux.
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